

wfdb

Introduction

The native Python waveform-database (WFDB) package. A library of tools
for reading, writing, and processing WFDB signals and annotations.

Core components of this package are based on the original WFDB
specifications. This package does not contain the exact same
functionality as the original WFDB package. It aims to implement as many
of its core features as possible, with user-friendly APIs. Additional
useful physiological signal-processing tools are added over time.

Development

The development repository is hosted at: https://github.com/MIT-LCP/wfdb-python

The package is to be expanded with physiological signal-processing tools, and general improvements. Development is made for Python 2.7 and 3.5+ only.

API Reference

The exact API of all accessible functions and classes, as given by the docstrings, grouped by subpackage:

	io
	WFDB Records

	WFDB Anotations

	Downloading

	plot

	processing
	Basic Utility

	Heart Rate

	Peaks

	QRS Detectors

	Annotation Evaluators

Core Components

A subset of the above components are accessible by directly importing the base package.

	wfdb
	WFDB Records

	WFDB Anotations

	Downloading

	Plotting

Other Content

	Installation

	WFDB Specifications

Indices and tables

	Index

	Module Index

	Search Page

Authors

Chen Xie [https://github.com/cx1111/]

Julien Dubiel [https://github.com/Dubrzr/]

io

The input/output subpackage contains classes used to represent WFDB
objects, and functions to read, write, and download WFDB files.

WFDB Records

	
wfdb.io.rdrecord(record_name, sampfrom=0, sampto=None, channels=None, physical=True, pb_dir=None, m2s=True, smooth_frames=True, ignore_skew=False, return_res=64, force_channels=True, channel_names=None, warn_empty=False)

	Read a WFDB record and return the signal and record descriptors as
attributes in a Record or MultiRecord object.

	record_namestr

	The name of the WFDB record to be read, without any file
extensions. If the argument contains any path delimiter
characters, the argument will be interpreted as PATH/BASE_RECORD.
Both relative and absolute paths are accepted. If the pb_dir
parameter is set, this parameter should contain just the base
record name, and the files fill be searched for remotely.
Otherwise, the data files will be searched for in the local path.

	sampfromint, optional

	The starting sample number to read for all channels.

	samptoint, or ‘end’, optional

	The sample number at which to stop reading for all channels.
Reads the entire duration by default.

	channelslist, optional

	List of integer indices specifying the channels to be read.
Reads all channels by default.

	physicalbool, optional

	Specifies whether to return signals in physical units in the
p_signal field (True), or digital units in the d_signal
field (False).

	pb_dirstr, optional

	Option used to stream data from Physiobank. The Physiobank
database directory from which to find the required record files.
eg. For record ‘100’ in ‘http://physionet.org/physiobank/database/mitdb’
pb_dir=’mitdb’.

	m2sbool, optional

	Used when reading multi-segment records. Specifies whether to
directly return a wfdb MultiRecord object (False), or to convert
it into and return a wfdb Record object (True).

	smooth_framesbool, optional

	Used when reading records with signals having multiple samples
per frame. Specifies whether to smooth the samples in signals
with more than one sample per frame and return an (MxN) uniform
numpy array as the d_signal or p_signal field (True), or to
return a list of 1d numpy arrays containing every expanded
sample as the e_d_signal or e_p_signal field (False).

	ignore_skewbool, optional

	Used when reading records with at least one skewed signal.
Specifies whether to apply the skew to align the signals in the
output variable (False), or to ignore the skew field and load in
all values contained in the dat files unaligned (True).

	return_resint, optional

	The numpy array dtype of the returned signals. Options are: 64,
32, 16, and 8, where the value represents the numpy int or float
dtype. Note that the value cannot be 8 when physical is True
since there is no float8 format.

	force_channelsbool, optional

	Used when reading multi-segment variable layout records. Whether
to update the layout specification record, and the converted
Record object if m2s is True, to match the input channels
argument, or to omit channels in which no read segment contains
the signals.

	channel_nameslist, optional

	List of channel names to return. If this parameter is specified,
it takes precedence over channels.

	warn_emptybool, optional

	Whether to display a warning if the specified channel indices
or names are not contained in the record, and no signal is
returned.

	recordRecord or MultiRecord

	The wfdb Record or MultiRecord object representing the contents
of the record read.

If a signal range or channel selection is specified when calling
this function, the resulting attributes of the returned object will
be set to reflect the section of the record that is actually read,
rather than necessarily the entire record. For example, if
channels=[0, 1, 2] is specified when reading a 12 channel record,
the ‘n_sig’ attribute will be 3, not 12.

The rdsamp function exists as a simple alternative to rdrecord
for the common purpose of extracting the physical signals and a few
important descriptor fields.

>>> record = wfdb.rdrecord('sample-data/test01_00s', sampfrom=800,
 channels=[1, 3])

	
wfdb.io.rdsamp(record_name, sampfrom=0, sampto=None, channels=None, pb_dir=None, channel_names=None, warn_empty=False)

	Read a WFDB record, and return the physical signals and a few important
descriptor fields.

	record_namestr

	The name of the WFDB record to be read (without any file
extensions). If the argument contains any path delimiter
characters, the argument will be interpreted as PATH/baserecord
and the data files will be searched for in the local path.

	sampfromint, optional

	The starting sample number to read for all channels.

	samptoint, or ‘end’, optional

	The sample number at which to stop reading for all channels.
Reads the entire duration by default.

	channelslist, optional

	List of integer indices specifying the channels to be read.
Reads all channels by default.

	pb_dirstr, optional

	Option used to stream data from Physiobank. The Physiobank
database directory from which to find the required record files.
eg. For record ‘100’ in ‘http://physionet.org/physiobank/database/mitdb’
pb_dir=’mitdb’.

	channel_nameslist, optional

	List of channel names to return. If this parameter is specified,
it takes precedence over channels.

	warn_emptybool, optional

	Whether to display a warning if the specified channel indices
or names are not contained in the record, and no signal is
returned.

	signalsnumpy array

	A 2d numpy array storing the physical signals from the record.

	fieldsdict

	A dictionary containing several key attributes of the read
record:

	fs: The sampling frequency of the record

	units: The units for each channel

	sig_name: The signal name for each channel

	comments: Any comments written in the header

If a signal range or channel selection is specified when calling
this function, the resulting attributes of the returned object will
be set to reflect the section of the record that is actually read,
rather than necessarily the entire record. For example, if
channels=[0, 1, 2] is specified when reading a 12 channel record,
the ‘n_sig’ attribute will be 3, not 12.

The rdrecord function is the base function upon which this one is
built. It returns all attributes present, along with the signals, as
attributes in a Record object. The function, along with the
returned data type, has more options than rdsamp for users who
wish to more directly manipulate WFDB content.

>>> signals, fields = wfdb.rdsamp('sample-data/test01_00s',
 sampfrom=800,
 channel =[1,3])

	
wfdb.io.wrsamp(record_name, fs, units, sig_name, p_signal=None, d_signal=None, fmt=None, adc_gain=None, baseline=None, comments=None, base_time=None, base_date=None, write_dir='')

	Write a single segment WFDB record, creating a WFDB header file and any
associated dat files.

	record_namestr

	The string name of the WFDB record to be written (without any file
extensions).

	fsint, or float

	The sampling frequency of the record.

	unitslist

	A list of strings giving the units of each signal channel.

	sig_name :

	A list of strings giving the signal name of each signal channel.

	p_signalnumpy array, optional

	An (MxN) 2d numpy array, where M is the signal length. Gives the
physical signal values intended to be written. Either p_signal or
d_signal must be set, but not both. If p_signal is set, this method will
use it to perform analogue-digital conversion, writing the resultant
digital values to the dat file(s). If fmt is set, gain and baseline must
be set or unset together. If fmt is unset, gain and baseline must both
be unset.

	d_signalnumpy array, optional

	An (MxN) 2d numpy array, where M is the signal length. Gives the
digital signal values intended to be directly written to the dat
file(s). The dtype must be an integer type. Either p_signal or d_signal
must be set, but not both. In addition, if d_signal is set, fmt, gain
and baseline must also all be set.

	fmtlist, optional

	A list of strings giving the WFDB format of each file used to store each
channel. Accepted formats are: ‘80’,‘212”,‘16’,‘24’, and ‘32’. There are
other WFDB formats as specified by:
https://www.physionet.org/physiotools/wag/signal-5.htm
but this library will not write (though it will read) those file types.

	adc_gainlist, optional

	A list of numbers specifying the ADC gain.

	baselinelist, optional

	A list of integers specifying the digital baseline.

	commentslist, optional

	A list of string comments to be written to the header file.

	base_timestr, optional

	A string of the record’s start time in 24h ‘HH:MM:SS(.ms)’ format.

	base_datestr, optional

	A string of the record’s start date in ‘DD/MM/YYYY’ format.

	write_dirstr, optional

	The directory in which to write the files.

This is a gateway function, written as a simple method to write WFDB record
files using the most common parameters. Therefore not all WFDB fields can be
set via this function.

For more control over attributes, create a Record object, manually set its
attributes, and call its wrsamp instance method. If you choose this more
advanced method, see also the set_defaults, set_d_features, and
set_p_features instance methods to help populate attributes.

>>> # Read part of a record from Physiobank
>>> signals, fields = wfdb.rdsamp('a103l', sampfrom=50000, channels=[0,1],
 pb_dir='challenge/2015/training')
>>> # Write a local WFDB record (manually inserting fields)
>>> wfdb.wrsamp('ecgrecord', fs = 250, units=['mV', 'mV'],
 sig_name=['I', 'II'], p_signal=signals, fmt=['16', '16'])

	
class wfdb.io.Record(p_signal=None, d_signal=None, e_p_signal=None, e_d_signal=None, record_name=None, n_sig=None, fs=None, counter_freq=None, base_counter=None, sig_len=None, base_time=None, base_date=None, file_name=None, fmt=None, samps_per_frame=None, skew=None, byte_offset=None, adc_gain=None, baseline=None, units=None, adc_res=None, adc_zero=None, init_value=None, checksum=None, block_size=None, sig_name=None, comments=None)

	The class representing single segment WFDB records.

Record objects can be created using the initializer, by reading a WFDB
header with rdheader, or a WFDB record (header and associated dat files)
with rdrecord.

The attributes of the Record object give information about the record as
specified by: https://www.physionet.org/physiotools/wag/header-5.htm

In addition, the d_signal and p_signal attributes store the digital and
physical signals of WFDB records with at least one channel.

>>> record = wfdb.Record(record_name='r1', fs=250, n_sig=2, sig_len=1000,
 file_name=['r1.dat','r1.dat'])

	
adc(expanded=False, inplace=False)

	Performs analogue to digital conversion of the physical signal stored
in p_signal if expanded is False, or e_p_signal if expanded is True.

The p_signal/e_p_signal, fmt, gain, and baseline fields must all be
valid.

If inplace is True, the adc will be performed inplace on the variable,
the d_signal/e_d_signal attribute will be set, and the
p_signal/e_p_signal field will be set to None.

	expandedbool, optional

	Whether to transform the e_p_signal attribute (True) or
the p_signal attribute (False).

	inplacebool, optional

	Whether to automatically set the object’s corresponding
digital signal attribute and set the physical
signal attribute to None (True), or to return the converted
signal as a separate variable without changing the original
physical signal attribute (False).

	d_signalnumpy array, optional

	The digital conversion of the signal. Either a 2d numpy
array or a list of 1d numpy arrays.

>>> import wfdb
>>> record = wfdb.rdsamp('sample-data/100')
>>> d_signal = record.adc()
>>> record.adc(inplace=True)
>>> record.dac(inplace=True)

	
dac(expanded=False, return_res=64, inplace=False)

	Performs the digital to analogue conversion of the signal stored
in d_signal if expanded is False, or e_d_signal if expanded
is True.

The d_signal/e_d_signal, fmt, gain, and baseline fields must all be
valid.

If inplace is True, the dac will be performed inplace on the
variable, the p_signal/e_p_signal attribute will be set, and the
d_signal/e_d_signal field will be set to None.

	expandedbool, optional

	Whether to transform the e_d_signal attribute (True) or
the d_signal attribute (False).

	inplacebool, optional

	Whether to automatically set the object’s corresponding
physical signal attribute and set the digital signal
attribute to None (True), or to return the converted
signal as a separate variable without changing the original
digital signal attribute (False).

	p_signalnumpy array, optional

	The physical conversion of the signal. Either a 2d numpy
array or a list of 1d numpy arrays.

>>> import wfdb
>>> record = wfdb.rdsamp('sample-data/100', physical=False)
>>> p_signal = record.dac()
>>> record.dac(inplace=True)
>>> record.adc(inplace=True)

	
wrsamp(expanded=False, write_dir='')

	Write a wfdb header file and any associated dat files from this
object.

	expandedbool, optional

	Whether to write the expanded signal (e_d_signal) instead
of the uniform signal (d_signal).

	write_dirstr, optional

	The directory in which to write the files.

	
class wfdb.io.MultiRecord(segments=None, layout=None, record_name=None, n_sig=None, fs=None, counter_freq=None, base_counter=None, sig_len=None, base_time=None, base_date=None, seg_name=None, seg_len=None, comments=None, sig_name=None, sig_segments=None)

	The class representing multi-segment WFDB records.

MultiRecord objects can be created using the initializer, or by reading a
multi-segment WFDB record using ‘rdrecord’ with the m2s (multi to single)
input parameter set to False.

The attributes of the MultiRecord object give information about the entire
record as specified by: https://www.physionet.org/physiotools/wag/header-5.htm

In addition, the segments parameter is a list of Record objects
representing each individual segment, or None representing empty segments,
of the entire multi-segment record.

Notably, this class has no attribute representing the signals as a whole.
The ‘multi_to_single’ instance method can be called on MultiRecord objects
to return a single segment representation of the record as a Record object.
The resulting Record object will have its ‘p_signal’ field set.

>>> record_m = wfdb.MultiRecord(record_name='rm', fs=50, n_sig=8,
 sig_len=9999, seg_name=['rm_1', '~', rm_2'],
 seg_len=[800, 200, 900])
>>> # Get a MultiRecord object
>>> record_s = wfdb.rdsamp('s00001-2896-10-10-00-31', m2s=False)
>>> # Turn it into a
>>> record_s = record_s.multi_to_single()

record_s initially stores a MultiRecord object, and is then converted into
a Record object.

	
multi_to_single(physical, return_res=64)

	Create a Record object from the MultiRecord object. All signal
segments will be combined into the new object’s p_signal or
d_signal field. For digital format, the signals must have
the same storage format, baseline, and adc_gain in all segments.

	physicalbool

	Whether to convert the physical or digital signal.

	return_resint, optional

	The return resolution of the p_signal field. Options are:
64, 32, and 16.

	recordwfdb Record

	The single segment record created.

WFDB Anotations

	
wfdb.io.rdann(record_name, extension, sampfrom=0, sampto=None, shift_samps=False, pb_dir=None, return_label_elements=['symbol'], summarize_labels=False)

	Read a WFDB annotation file record_name.extension and return an
Annotation object.

	record_namestr

	The record name of the WFDB annotation file. ie. for file ‘100.atr’,
record_name=‘100’.

	extensionstr

	The annotatator extension of the annotation file. ie. for file
‘100.atr’, extension=’atr’.

	sampfromint, optional

	The minimum sample number for annotations to be returned.

	samptoint, optional

	The maximum sample number for annotations to be returned.

	shift_sampsbool, optional

	Specifies whether to return the sample indices relative to sampfrom
(True), or sample 0 (False).

	pb_dirstr, optional

	Option used to stream data from Physiobank. The Physiobank database
directory from which to find the required annotation file. eg. For
record ‘100’ in ‘http://physionet.org/physiobank/database/mitdb’:
pb_dir=’mitdb’.

	return_label_elementslist, optional

	The label elements that are to be returned from reading the annotation
file. A list with at least one of the following options: ‘symbol’,
‘label_store’, ‘description’.

	summarize_labelsbool, optional

	If True, assign a summary table of the set of annotation labels
contained in the file to the ‘contained_labels’ attribute of the
returned object. This table will contain the columns:
[‘label_store’, ‘symbol’, ‘description’, ‘n_occurences’]

	annotationAnnotation

	The Annotation object. Call help(wfdb.Annotation) for the attribute
descriptions.

For every annotation sample, the annotation file explictly stores the
‘sample’ and ‘symbol’ fields, but not necessarily the others. When reading
annotation files using this function, fields which are not stored in the
file will either take their default values of 0 or None, or will be carried
over from their previous values if any.

>>> ann = wfdb.rdann('sample-data/100', 'atr', sampto=300000)

	
wfdb.io.wrann(record_name, extension, sample, symbol=None, subtype=None, chan=None, num=None, aux_note=None, label_store=None, fs=None, custom_labels=None, write_dir='')

	Write a WFDB annotation file.

Specify at least the following:

	The record name of the WFDB record (record_name)

	The annotation file extension (extension)

	The annotation locations in samples relative to the beginning of
the record (sample)

	Either the numerical values used to store the labels
(label_store), or more commonly, the display symbols of each
label (symbol).

	record_namestr

	The string name of the WFDB record to be written (without any file
extensions).

	extensionstr

	The string annotation file extension.

	samplenumpy array

	A numpy array containing the annotation locations in samples relative to
the beginning of the record.

	symbollist, or numpy array, optional

	The symbols used to display the annotation labels. List or numpy array.
If this field is present, label_store must not be present.

	subtypenumpy array, optional

	A numpy array containing the marked class/category of each annotation.

	channumpy array, optional

	A numpy array containing the signal channel associated with each
annotation.

	numnumpy array, optional

	A numpy array containing the labelled annotation number for each
annotation.

	aux_notelist, optional

	A list containing the auxiliary information string (or None for
annotations without notes) for each annotation.

	label_storenumpy array, optional

	A numpy array containing the integer values used to store the
annotation labels. If this field is present, symbol must not be
present.

	fsint, or float, optional

	The numerical sampling frequency of the record to be written to the file.

	custom_labelspandas dataframe, optional

	The map of custom defined annotation labels used for this annotation, in
addition to the standard WFDB annotation labels. Custom labels are
defined by two or three fields:

	The integer values used to store custom annotation labels in the file
(optional)

	Their short display symbols

	Their long descriptions.

This input argument may come in four formats:

	A pandas.DataFrame object with columns:
[‘label_store’, ‘symbol’, ‘description’]

	A pandas.DataFrame object with columns: [‘symbol’, ‘description’]
If this option is chosen, label_store values are automatically chosen.

	A list or tuple of tuple triplets, with triplet elements
representing: (label_store, symbol, description).

	A list or tuple of tuple pairs, with pair elements representing:
(symbol, description). If this option is chosen, label_store values
are automatically chosen.

If the label_store field is given for this function, and
custom_labels is defined, custom_labels must contain label_store
in its mapping. ie. it must come in format 1 or 3 above.

	write_dirstr, optional

	The directory in which to write the annotation file

This is a gateway function, written as a simple way to write WFDB annotation
files without needing to explicity create an Annotation object. You may also
create an Annotation object, manually set its attributes, and call its
wrann instance method.

Each annotation stored in a WFDB annotation file contains a sample field and
a label field. All other fields may or may not be present.

>>> # Read an annotation as an Annotation object
>>> annotation = wfdb.rdann('b001', 'atr', pb_dir='cebsdb')
>>> # Write a copy of the annotation file
>>> wfdb.wrann('b001', 'cpy', annotation.sample, annotation.symbol)

	
wfdb.io.show_ann_labels()

	Display the standard wfdb annotation label mapping.

>>> show_ann_labels()

	
wfdb.io.show_ann_classes()

	Display the standard wfdb annotation classes

>>> show_ann_classes()

	
class wfdb.io.Annotation(record_name, extension, sample, symbol=None, subtype=None, chan=None, num=None, aux_note=None, fs=None, label_store=None, description=None, custom_labels=None, contained_labels=None)

	The class representing WFDB annotations.

Annotation objects can be created using the initializer, or by reading a
WFDB annotation file with rdann.

The attributes of the Annotation object give information about the
annotation as specified by:
https://www.physionet.org/physiotools/wag/annot-5.htm

Call show_ann_labels() to see the list of standard annotation codes. Any
text used to label annotations that are not one of these codes should go in
the ‘aux_note’ field rather than the ‘sym’ field.

>>> ann1 = wfdb.Annotation(record_name='rec1', extension='atr',
 sample=[10,20,400], symbol=['N','N','['],
 aux_note=[None, None, 'Serious Vfib'])

	
wrann(write_fs=False, write_dir='')

	Write a WFDB annotation file from this object.

	write_fsbool, optional

	Whether to write the fs attribute to the file.

Downloading

	
wfdb.io.get_dbs()

	Get a list of all the Physiobank databases available.

>>> dbs = get_dbs()

	
wfdb.io.get_record_list(db_dir, records='all')

	Get a list of records belonging to a database.

	db_dirstr

	The database directory, usually the same as the database slug.
The location to look for a RECORDS file.

	recordslist, optional

	A Option used when this function acts as a helper function.
Leave as default ‘all’ to get all records.

>>> wfdb.get_record_list('mitdb')

	
wfdb.io.dl_database(db_dir, dl_dir, records='all', annotators='all', keep_subdirs=True, overwrite=False)

	Download WFDB record (and optionally annotation) files from a
Physiobank database. The database must contain a ‘RECORDS’ file in
its base directory which lists its WFDB records.

	db_dirstr

	The Physiobank database directory to download. eg. For database:
‘http://physionet.org/physiobank/database/mitdb’, db_dir=’mitdb’.

	dl_dirstr

	The full local directory path in which to download the files.

	recordslist, or ‘all’, optional

	A list of strings specifying the WFDB records to download. Leave
as ‘all’ to download all records listed in the database’s
RECORDS file.
eg. records=[‘test01_00s’, test02_45s] for database:
https://physionet.org/physiobank/database/macecgdb/

	annotatorslist, ‘all’, or None, optional

	A list of strings specifying the WFDB annotation file types to
download along with the record files. Is either None to skip
downloading any annotations, ‘all’ to download all annotation
types as specified by the ANNOTATORS file, or a list of strings
which each specify an annotation extension.
eg. annotators = [‘anI’] for database:
https://physionet.org/physiobank/database/prcp/

	keep_subdirsbool, optional

	Whether to keep the relative subdirectories of downloaded files
as they are organized in Physiobank (True), or to download all
files into the same base directory (False).

	overwritebool, optional

	If True, all files will be redownloaded regardless. If False,
existing files with the same name and relative subdirectory will
be checked. If the local file is the same size as the online
file, the download is skipped. If the local file is larger, it
will be deleted and the file will be redownloaded. If the local
file is smaller, the file will be assumed to be partially
downloaded and the remaining bytes will be downloaded and
appended.

>>> wfdb.dl_database('ahadb', os.getcwd())

	
wfdb.io.dl_files(db, dl_dir, files, keep_subdirs=True, overwrite=False)

	Download specified files from a Physiobank database.

	dbstr

	The Physiobank database directory to download. eg. For database:
‘http://physionet.org/physiobank/database/mitdb’, db=’mitdb’.

	dl_dirstr

	The full local directory path in which to download the files.

	fileslist

	A list of strings specifying the file names to download relative to the
database base directory.

	keep_subdirsbool, optional

	Whether to keep the relative subdirectories of downloaded files as they
are organized in Physiobank (True), or to download all files into the
same base directory (False).

	overwritebool, optional

	If True, all files will be redownloaded regardless. If False, existing
files with the same name and relative subdirectory will be checked.
If the local file is the same size as the online file, the download is
skipped. If the local file is larger, it will be deleted and the file
will be redownloaded. If the local file is smaller, the file will be
assumed to be partially downloaded and the remaining bytes will be
downloaded and appended.

>>> wfdb.dl_files('ahadb', os.getcwd(),
 ['STAFF-Studies-bibliography-2016.pdf', 'data/001a.hea',
 'data/001a.dat'])

	
wfdb.io.set_db_index_url(db_index_url='http://physionet.org/physiobank/database/')

	Set the database index url to a custom value, to stream remote
files from another location.

	db_index_urlstr, optional

	The desired new database index url. Leave as default to reset
to the physiobank index url.

plot

The plot subpackage contains tools for plotting signals and annotations.

	
wfdb.plot.plot_items(signal=None, ann_samp=None, ann_sym=None, fs=None, time_units='samples', sig_name=None, sig_units=None, ylabel=None, title=None, sig_style=[''], ann_style=['r*'], ecg_grids=[], figsize=None, return_fig=False)

	Subplot individual channels of signals and/or annotations.

	signal1d or 2d numpy array, optional

	The uniformly sampled signal to be plotted. If signal.ndim is 1, it is
assumed to be a one channel signal. If it is 2, axes 0 and 1, must
represent time and channel number respectively.

	ann_samp: list, optional

	A list of annotation locations to plot, with each list item
corresponding to a different channel. List items may be:

	1d numpy array, with values representing sample indices. Empty
arrays are skipped.

	list, with values representing sample indices. Empty lists
are skipped.

	None. For channels in which nothing is to be plotted.

If signal is defined, the annotation locations will be overlaid on
the signals, with the list index corresponding to the signal channel.
The length of annotation does not have to match the number of
channels of signal.

	ann_sym: list, optional

	A list of annotation symbols to plot, with each list item
corresponding to a different channel. List items should be lists of
strings. The symbols are plotted over the corresponding ann_samp
index locations.

	fsint or float, optional

	The sampling frequency of the signals and/or annotations. Used to
calculate time intervals if time_units is not ‘samples’. Also
required for plotting ecg grids.

	time_unitsstr, optional

	The x axis unit. Allowed options are: ‘samples’, ‘seconds’, ‘minutes’,
and ‘hours’.

	sig_namelist, optional

	A list of strings specifying the signal names. Used with sig_units
to form y labels, if ylabel is not set.

	sig_unitslist, optional

	A list of strings specifying the units of each signal channel. Used
with sig_name to form y labels, if ylabel is not set. This
parameter is required for plotting ecg grids.

	ylabellist, optional

	A list of strings specifying the final y labels. If this option is
present, sig_name and sig_units will not be used for labels.

	titlestr, optional

	The title of the graph.

	sig_stylelist, optional

	A list of strings, specifying the style of the matplotlib plot
for each signal channel. The list length should match the number
of signal channels. If the list has a length of 1, the style
will be used for all channels.

	ann_stylelist, optional

	A list of strings, specifying the style of the matplotlib plot for each
annotation channel. If the list has a length of 1, the style will be
used for all channels.

	ecg_gridslist, optional

	A list of integers specifying channels in which to plot ecg grids. May
also be set to ‘all’ for all channels. Major grids at 0.5mV, and minor
grids at 0.125mV. All channels to be plotted with grids must have
sig_units equal to ‘uV’, ‘mV’, or ‘V’.

	figsizetuple, optional

	Tuple pair specifying the width, and height of the figure. It is the
‘figsize’ argument passed into matplotlib.pyplot’s figure function.

	return_figbool, optional

	Whether the figure is to be returned as an output argument.

	figurematplotlib figure, optional

	The matplotlib figure generated. Only returned if the ‘return_fig’
parameter is set to True.

>>> record = wfdb.rdrecord('sample-data/100', sampto=3000)
>>> ann = wfdb.rdann('sample-data/100', 'atr', sampto=3000)

>>> wfdb.plot_items(signal=record.p_signal,
 annotation=[ann.sample, ann.sample],
 title='MIT-BIH Record 100', time_units='seconds',
 figsize=(10,4), ecg_grids='all')

	
wfdb.plot.plot_wfdb(record=None, annotation=None, plot_sym=False, time_units='samples', title=None, sig_style=[''], ann_style=['r*'], ecg_grids=[], figsize=None, return_fig=False)

	Subplot individual channels of a wfdb record and/or annotation.

This function implements the base functionality of the plot_items
function, while allowing direct input of wfdb objects.

	If the record object is input, the function will extract from it:

	
	signal values, from the p_signal (priority) or d_signal attribute

	sampling frequency, from the fs attribute

	signal names, from the sig_name attribute

	signal units, from the units attribute

	If the annotation object is input, the function will extract from it:

	
	sample locations, from the sample attribute

	symbols, from the symbol attribute

	the annotation channels, from the chan attribute

	the sampling frequency, from the fs attribute if present, and if fs
was not already extracted from the record argument.

	recordwfdb Record, optional

	The Record object to be plotted

	annotationwfdb Annotation, optional

	The Annotation object to be plotted

	plot_symbool, optional

	Whether to plot the annotation symbols on the graph.

	time_unitsstr, optional

	The x axis unit. Allowed options are: ‘samples’, ‘seconds’,
‘minutes’, and ‘hours’.

	titlestr, optional

	The title of the graph.

	sig_stylelist, optional

	A list of strings, specifying the style of the matplotlib plot
for each signal channel. The list length should match the number
of signal channels. If the list has a length of 1, the style
will be used for all channels.

	ann_stylelist, optional

	A list of strings, specifying the style of the matplotlib plot
for each annotation channel. The list length should match the
number of annotation channels. If the list has a length of 1,
the style will be used for all channels.

	ecg_gridslist, optional

	A list of integers specifying channels in which to plot ecg grids. May
also be set to ‘all’ for all channels. Major grids at 0.5mV, and minor
grids at 0.125mV. All channels to be plotted with grids must have
sig_units equal to ‘uV’, ‘mV’, or ‘V’.

	figsizetuple, optional

	Tuple pair specifying the width, and height of the figure. It is the
‘figsize’ argument passed into matplotlib.pyplot’s figure function.

	return_figbool, optional

	Whether the figure is to be returned as an output argument.

	figurematplotlib figure, optional

	The matplotlib figure generated. Only returned if the ‘return_fig’
option is set to True.

>>> record = wfdb.rdrecord('sample-data/100', sampto=3000)
>>> annotation = wfdb.rdann('sample-data/100', 'atr', sampto=3000)

>>> wfdb.plot_wfdb(record=record, annotation=annotation, plot_sym=True
 time_units='seconds', title='MIT-BIH Record 100',
 figsize=(10,4), ecg_grids='all')

	
wfdb.plot.plot_all_records(directory='')

	Plot all wfdb records in a directory (by finding header files), one at
a time, until the ‘enter’ key is pressed.

	directorystr, optional

	The directory in which to search for WFDB records. Defaults to
current working directory.

processing

The processing subpackage contains signal-processing tools.

Basic Utility

Basic signal processing functions

	
wfdb.processing.resample_ann(resampled_t, ann_sample)

	Compute the new annotation indices

	resampled_tnumpy array

	Array of signal locations as returned by scipy.signal.resample

	ann_samplenumpy array

	Array of annotation locations

	resampled_ann_samplenumpy array

	Array of resampled annotation locations

	
wfdb.processing.resample_sig(x, fs, fs_target)

	Resample a signal to a different frequency.

	xnumpy array

	Array containing the signal

	fsint, or float

	The original sampling frequency

	fs_targetint, or float

	The target frequency

	resampled_xnumpy array

	Array of the resampled signal values

	resampled_tnumpy array

	Array of the resampled signal locations

	
wfdb.processing.resample_singlechan(x, ann, fs, fs_target)

	Resample a single-channel signal with its annotations

	x: numpy array

	The signal array

	annwfdb Annotation

	The wfdb annotation object

	fsint, or float

	The original frequency

	fs_targetint, or float

	The target frequency

	resampled_xnumpy array

	Array of the resampled signal values

	resampled_annwfdb Annotation

	Annotation containing resampled annotation locations

	
wfdb.processing.resample_multichan(xs, ann, fs, fs_target, resamp_ann_chan=0)

	Resample multiple channels with their annotations

	xs: numpy array

	The signal array

	annwfdb Annotation

	The wfdb annotation object

	fsint, or float

	The original frequency

	fs_targetint, or float

	The target frequency

	resample_ann_channelint, optional

	The signal channel used to compute new annotation indices

	resampled_xsnumpy array

	Array of the resampled signal values

	resampled_annwfdb Annotation

	Annotation containing resampled annotation locations

	
wfdb.processing.normalize_bound(sig, lb=0, ub=1)

	Normalize a signal between the lower and upper bound

	signumpy array

	Original signal to be normalized

	lbint, or float

	Lower bound

	ubint, or float

	Upper bound

	x_normalizednumpy array

	Normalized signal

	
wfdb.processing.get_filter_gain(b, a, f_gain, fs)

	Given filter coefficients, return the gain at a particular
frequency.

	blist

	List of linear filter b coefficients

	alist

	List of linear filter a coefficients

	f_gainint or float, optional

	The frequency at which to calculate the gain

	fsint or float, optional

	The sampling frequency of the system

Heart Rate

	
wfdb.processing.compute_hr(sig_len, qrs_inds, fs)

	Compute instantaneous heart rate from peak indices.

	sig_lenint

	The length of the corresponding signal

	qrs_indsnumpy array

	The qrs index locations

	fsint, or float

	The corresponding signal’s sampling frequency.

	heart_ratenumpy array

	An array of the instantaneous heart rate, with the length of the
corresponding signal. Contains numpy.nan where heart rate could
not be computed.

Peaks

	
wfdb.processing.find_peaks(sig)

	Find hard peaks and soft peaks in a signal, defined as follows:

	Hard peak: a peak that is either /or /

	Soft peak: a peak that is either /-or -/
In this case we define the middle as the peak

	signp array

	The 1d signal array

	hard_peaksnumpy array

	Array containing the indices of the hard peaks:

	soft_peaksnumpy array

	Array containing the indices of the soft peaks

	
wfdb.processing.find_local_peaks(sig, radius)

	Find all local peaks in a signal. A sample is a local peak if it is
the largest value within the <radius> samples on its left and right.

In cases where it shares the max value with nearby samples, the
middle sample is classified as the local peak.

	signumpy array

	1d numpy array of the signal.

	radiusint

	The radius in which to search for defining local maxima.

	
wfdb.processing.correct_peaks(sig, peak_inds, search_radius, smooth_window_size, peak_dir='compare')

	Adjust a set of detected peaks to coincide with local signal maxima,
and

	signumpy array

	The 1d signal array

	peak_indsnp array

	Array of the original peak indices

	max_gapint

	The radius within which the original peaks may be shifted.

	smooth_window_sizeint

	The window size of the moving average filter applied on the
signal. Peak distance is calculated on the difference between
the original and smoothed signal.

	peak_dirstr, optional

	The expected peak direction: ‘up’ or ‘down’, ‘both’, or
‘compare’.

	If ‘up’, the peaks will be shifted to local maxima

	If ‘down’, the peaks will be shifted to local minima

	If ‘both’, the peaks will be shifted to local maxima of the
rectified signal

	If ‘compare’, the function will try both ‘up’ and ‘down’
options, and choose the direction that gives the largest mean
distance from the smoothed signal.

	corrected_peak_indsnumpy array

	Array of the corrected peak indices

QRS Detectors

	
class wfdb.processing.XQRS(sig, fs, conf=None)

	The qrs detector class for the xqrs algorithm.

The XQRS.Conf class is the configuration class that stores initial
parameters for the detection.

The XQRS.detect method runs the detection algorithm.

The process works as follows:

	Load the signal and configuration parameters.

	Bandpass filter the signal between 5 and 20 Hz, to get the
filtered signal.

	Apply moving wave integration (mwi) with a ricker
(Mexican hat) wavelet onto the filtered signal, and save the
square of the integrated signal.

	Conduct learning if specified, to initialize running
parameters of noise and qrs amplitudes, the qrs detection
threshold, and recent rr intervals. If learning is unspecified
or fails, use default parameters.

	Run the main detection. Iterate through the local maxima of
the mwi signal. For each local maxima:

	Check if it is a qrs complex. To be classified as a qrs,
it must come after the refractory period, cross the qrs
detection threshold, and not be classified as a t-wave
if it comes close enough to the previous qrs. If
successfully classified, update running detection
threshold and heart rate parameters.

	If not a qrs, classify it as a noise peak and update
running parameters.

	Before continuing to the next local maxima, if no qrs
was detected within 1.66 times the recent rr interval,
perform backsearch qrs detection. This checks previous
peaks using a lower qrs detection threshold.

>>> import wfdb
>>> from wfdb import processing

>>> sig, fields = wfdb.rdsamp('sample-data/100', channels=[0])
>>> xqrs = processing.XQRS(sig=sig[:,0], fs=fields['fs'])
>>> xqrs.detect()

>>> wfdb.plot_items(signal=sig, ann_samp=[xqrs.qrs_inds])

	
class Conf(hr_init=75, hr_max=200, hr_min=25, qrs_width=0.1, qrs_thr_init=0.13, qrs_thr_min=0, ref_period=0.2, t_inspect_period=0.36)

	Initial signal configuration object for this qrs detector

	
detect(sampfrom=0, sampto='end', learn=True, verbose=True)

	Detect qrs locations between two samples.

	sampfromint, optional

	The starting sample number to run the detection on.

	samptoint, optional

	The final sample number to run the detection on. Set as
‘end’ to run on the entire signal.

	learnbool, optional

	Whether to apply learning on the signal before running the
main detection. If learning fails or is not conducted, the
default configuration parameters will be used to initialize
these variables. See the XQRS._learn_init_params docstring
for details.

	verbosebool, optional

	Whether to display the stages and outcomes of the detection
process.

	
wfdb.processing.xqrs_detect(sig, fs, sampfrom=0, sampto='end', conf=None, learn=True, verbose=True)

	Run the ‘xqrs’ qrs detection algorithm on a signal. See the
docstring of the XQRS class for algorithm details.

	signumpy array

	The input ecg signal to apply the qrs detection on.

	fsint or float

	The sampling frequency of the input signal.

	sampfromint, optional

	The starting sample number to run the detection on.

	sampto :

	The final sample number to run the detection on. Set as ‘end’ to
run on the entire signal.

	confXQRS.Conf object, optional

	The configuration object specifying signal configuration
parameters. See the docstring of the XQRS.Conf class.

	learnbool, optional

	Whether to apply learning on the signal before running the main
detection. If learning fails or is not conducted, the default
configuration parameters will be used to initialize these
variables.

	verbosebool, optional

	Whether to display the stages and outcomes of the detection
process.

	qrs_indsnumpy array

	The indices of the detected qrs complexes

>>> import wfdb
>>> from wfdb import processing

>>> sig, fields = wfdb.rdsamp('sample-data/100', channels=[0])
>>> qrs_inds = processing.xqrs_detect(sig=sig[:,0], fs=fields['fs'])

	
wfdb.processing.gqrs_detect(sig=None, fs=None, d_sig=None, adc_gain=None, adc_zero=None, threshold=1.0, hr=75, RRdelta=0.2, RRmin=0.28, RRmax=2.4, QS=0.07, QT=0.35, RTmin=0.25, RTmax=0.33, QRSa=750, QRSamin=130)

	Detect qrs locations in a single channel ecg. Functionally, a direct port
of the gqrs algorithm from the original wfdb package. Accepts either a
physical signal, or a digital signal with known adc_gain and adc_zero.

See the notes below for a summary of the program. This algorithm is not
being developed/supported.

	sig1d numpy array, optional

	The input physical signal. The detection algorithm which replicates
the original, works using digital samples, and this physical option is
provided as a convenient interface. If this is the specified input
signal, automatic adc is performed using 24 bit precision, to obtain
the d_sig, adc_gain, and adc_zero parameters. There may be minor
differences in detection results (ie. an occasional 1 sample
difference) between using sig and d_sig. To replicate the exact
output of the original gqrs algorithm, use the d_sig argument
instead.

	fsint, or float

	The sampling frequency of the signal.

	d_sig1d numpy array, optional

	The input digital signal. If this is the specified input signal rather
than sig, the adc_gain and adc_zero parameters must be specified.

	adc_gainint, or float, optional

	The analogue to digital gain of the signal (the number of adus per
physical unit).

	adc_zero: int, optional

	The value produced by the ADC given a 0 volt input.

	thresholdint, or float, optional

	The relative amplitude detection threshold. Used to initialize the peak
and qrs detection threshold.

	hrint, or float, optional

	Typical heart rate, in beats per minute.

	RRdeltaint or float, optional

	Typical difference between successive RR intervals in seconds.

	RRminint or float, optional

	Minimum RR interval (“refractory period”), in seconds.

	RRmaxint or float, optional

	Maximum RR interval, in seconds. Thresholds will be adjusted if no
peaks are detected within this interval.

	QSint or float, optional

	Typical QRS duration, in seconds.

	QTint or float, optional

	Typical QT interval, in seconds.

	RTminint or float, optional

	Minimum interval between R and T peaks, in seconds.

	RTmaxint or float, optional

	Maximum interval between R and T peaks, in seconds.

	QRSaint or float, optional

	Typical QRS peak-to-peak amplitude, in microvolts.

	QRSaminint or float, optional

	Minimum QRS peak-to-peak amplitude, in microvolts.

	qrs_locsnumpy array

	Detected qrs locations

This function should not be used for signals with fs <= 50Hz

The algorithm theoretically works as follows:

	Load in configuration parameters. They are used to set/initialize the:

	allowed rr interval limits (fixed)

	initial recent rr interval (running)

	qrs width, used for detection filter widths (fixed)

	allowed rt interval limits (fixed)

	initial recent rt interval (running)

	initial peak amplitude detection threshold (running)

	initial qrs amplitude detection threshold (running)

	Note: this algorithm does not normalize signal amplitudes, and
hence is highly dependent on configuration amplitude parameters.

	Apply trapezoid low-pass filtering to the signal

	Convolve a QRS matched filter with the filtered signal

	Run the learning phase using a calculated signal length: detect qrs and
non-qrs peaks as in the main detection phase, without saving the qrs
locations. During this phase, running parameters of recent intervals
and peak/qrs thresholds are adjusted.

	
	Run the detection::

	if a sample is bigger than its immediate neighbors and larger
than the peak detection threshold, it is a peak.

if it is further than RRmin from the previous qrs, and is a
*primary peak.

if it is further than 2 standard deviations from the
previous qrs, do a backsearch for a missed low amplitude
beat

return the primary peak between the current sample
and the previous qrs if any.

	if it surpasses the qrs threshold, it is a qrs complex

	save the qrs location.
update running rr and qrs amplitude parameters.
look for the qrs complex’s t-wave and mark it if
found.

	else if it is not a peak

	lower the peak detection threshold if the last peak found
was more than RRmax ago, and not already at its minimum.

*A peak is secondary if there is a larger peak within its neighborhood
(time +- rrmin), or if it has been identified as a T-wave associated with a
previous primary peak. A peak is primary if it is largest in its neighborhood,
or if the only larger peaks are secondary.

The above describes how the algorithm should theoretically work, but there
are bugs which make the program contradict certain parts of its supposed
logic. A list of issues from the original c, code and hence this python
implementation can be found here:

https://github.com/bemoody/wfdb/issues/17

gqrs will not be supported/developed in this library.

>>> import numpy as np
>>> import wfdb
>>> from wfdb import processing

>>> # Detect using a physical input signal
>>> record = wfdb.rdrecord('sample-data/100', channels=[0])
>>> qrs_locs = processing.gqrs_detect(record.p_signal[:,0], fs=record.fs)

>>> # Detect using a digital input signal
>>> record_2 = wfdb.rdrecord('sample-data/100', channels=[0], physical=False)
>>> qrs_locs_2 = processing.gqrs_detect(d_sig=record_2.d_signal[:,0],
 fs=record_2.fs,
 adc_gain=record_2.adc_gain[0],
 adc_zero=record_2.adc_zero[0])

Annotation Evaluators

	
class wfdb.processing.Comparitor(ref_sample, test_sample, window_width, signal=None)

	The class to implement and hold comparisons between two sets of
annotations.

See methods compare, print_summary and plot.

>>> import wfdb
>>> from wfdb import processing

>>> sig, fields = wfdb.rdsamp('sample-data/100', channels=[0])
>>> ann_ref = wfdb.rdann('sample-data/100','atr')
>>> xqrs = processing.XQRS(sig=sig[:,0], fs=fields['fs'])
>>> xqrs.detect()

>>> comparitor = processing.Comparitor(ann_ref.sample[1:],
 xqrs.qrs_inds,
 int(0.1 * fields['fs']),
 sig[:,0])
>>> comparitor.compare()
>>> comparitor.print_summary()
>>> comparitor.plot()

	
compare()

	Main comparison function

	
plot(sig_style='', title=None, figsize=None, return_fig=False)

	Plot the comparison of two sets of annotations, possibly
overlaid on their original signal.

	sig_stylestr, optional

	The matplotlib style of the signal

	titlestr, optional

	The title of the plot

	figsize: tuple, optional

	Tuple pair specifying the width, and height of the figure.
It is the’figsize’ argument passed into matplotlib.pyplot’s
figure function.

	return_figbool, optional

	Whether the figure is to be returned as an output argument.

	
print_summary()

	Print summary metrics of the annotation comparisons.

	
wfdb.processing.compare_annotations(ref_sample, test_sample, window_width, signal=None)

	Compare a set of reference annotation locations against a set of
test annotation locations.

See the Comparitor class docstring for more information.

	ref_sample1d numpy array

	Array of reference sample locations

	test_sample1d numpy array

	Array of test sample locations to compare

	window_widthint

	The maximum absolute difference in sample numbers that is
permitted for matching annotations.

	signal1d numpy array, optional

	The original signal of the two annotations. Only used for
plotting.

	comparitorComparitor object

	Object containing parameters about the two sets of annotations

>>> import wfdb
>>> from wfdb import processing

>>> sig, fields = wfdb.rdsamp('sample-data/100', channels=[0])
>>> ann_ref = wfdb.rdann('sample-data/100','atr')
>>> xqrs = processing.XQRS(sig=sig[:,0], fs=fields['fs'])
>>> xqrs.detect()

>>> comparitor = processing.compare_annotations(ann_ref.sample[1:],
 xqrs.qrs_inds,
 int(0.1 * fields['fs']),
 sig[:,0])
>>> comparitor.print_summary()
>>> comparitor.plot()

	
wfdb.processing.benchmark_mitdb(detector, verbose=False)

	Benchmark a qrs detector against mitdb’s records.

	detectorfunction

	The detector function.

	verbosebool, optional

	The verbose option of the detector function.

	comparitorslist

	List of Comparitor objects run on the records.

	specificityfloat

	Aggregate specificity.

	positive_predictivityfloat

	Aggregate positive_predictivity.

	false_positive_ratefloat

	Aggregate false_positive_rate.

TODO:
- remove non-qrs detections from reference annotations
- allow kwargs

>>> import wfdb
>> from wfdb.processing import benchmark_mitdb, xqrs_detect

>>> comparitors, spec, pp, fpr = benchmark_mitdb(xqrs_detect)

wfdb

These core components are accessible by importing the wfdb package
directly, as well as from their respective subpackages.

WFDB Records

	
wfdb.rdrecord(record_name, sampfrom=0, sampto=None, channels=None, physical=True, pb_dir=None, m2s=True, smooth_frames=True, ignore_skew=False, return_res=64, force_channels=True, channel_names=None, warn_empty=False)

	Read a WFDB record and return the signal and record descriptors as
attributes in a Record or MultiRecord object.

	record_namestr

	The name of the WFDB record to be read, without any file
extensions. If the argument contains any path delimiter
characters, the argument will be interpreted as PATH/BASE_RECORD.
Both relative and absolute paths are accepted. If the pb_dir
parameter is set, this parameter should contain just the base
record name, and the files fill be searched for remotely.
Otherwise, the data files will be searched for in the local path.

	sampfromint, optional

	The starting sample number to read for all channels.

	samptoint, or ‘end’, optional

	The sample number at which to stop reading for all channels.
Reads the entire duration by default.

	channelslist, optional

	List of integer indices specifying the channels to be read.
Reads all channels by default.

	physicalbool, optional

	Specifies whether to return signals in physical units in the
p_signal field (True), or digital units in the d_signal
field (False).

	pb_dirstr, optional

	Option used to stream data from Physiobank. The Physiobank
database directory from which to find the required record files.
eg. For record ‘100’ in ‘http://physionet.org/physiobank/database/mitdb’
pb_dir=’mitdb’.

	m2sbool, optional

	Used when reading multi-segment records. Specifies whether to
directly return a wfdb MultiRecord object (False), or to convert
it into and return a wfdb Record object (True).

	smooth_framesbool, optional

	Used when reading records with signals having multiple samples
per frame. Specifies whether to smooth the samples in signals
with more than one sample per frame and return an (MxN) uniform
numpy array as the d_signal or p_signal field (True), or to
return a list of 1d numpy arrays containing every expanded
sample as the e_d_signal or e_p_signal field (False).

	ignore_skewbool, optional

	Used when reading records with at least one skewed signal.
Specifies whether to apply the skew to align the signals in the
output variable (False), or to ignore the skew field and load in
all values contained in the dat files unaligned (True).

	return_resint, optional

	The numpy array dtype of the returned signals. Options are: 64,
32, 16, and 8, where the value represents the numpy int or float
dtype. Note that the value cannot be 8 when physical is True
since there is no float8 format.

	force_channelsbool, optional

	Used when reading multi-segment variable layout records. Whether
to update the layout specification record, and the converted
Record object if m2s is True, to match the input channels
argument, or to omit channels in which no read segment contains
the signals.

	channel_nameslist, optional

	List of channel names to return. If this parameter is specified,
it takes precedence over channels.

	warn_emptybool, optional

	Whether to display a warning if the specified channel indices
or names are not contained in the record, and no signal is
returned.

	recordRecord or MultiRecord

	The wfdb Record or MultiRecord object representing the contents
of the record read.

If a signal range or channel selection is specified when calling
this function, the resulting attributes of the returned object will
be set to reflect the section of the record that is actually read,
rather than necessarily the entire record. For example, if
channels=[0, 1, 2] is specified when reading a 12 channel record,
the ‘n_sig’ attribute will be 3, not 12.

The rdsamp function exists as a simple alternative to rdrecord
for the common purpose of extracting the physical signals and a few
important descriptor fields.

>>> record = wfdb.rdrecord('sample-data/test01_00s', sampfrom=800,
 channels=[1, 3])

	
wfdb.rdsamp(record_name, sampfrom=0, sampto=None, channels=None, pb_dir=None, channel_names=None, warn_empty=False)

	Read a WFDB record, and return the physical signals and a few important
descriptor fields.

	record_namestr

	The name of the WFDB record to be read (without any file
extensions). If the argument contains any path delimiter
characters, the argument will be interpreted as PATH/baserecord
and the data files will be searched for in the local path.

	sampfromint, optional

	The starting sample number to read for all channels.

	samptoint, or ‘end’, optional

	The sample number at which to stop reading for all channels.
Reads the entire duration by default.

	channelslist, optional

	List of integer indices specifying the channels to be read.
Reads all channels by default.

	pb_dirstr, optional

	Option used to stream data from Physiobank. The Physiobank
database directory from which to find the required record files.
eg. For record ‘100’ in ‘http://physionet.org/physiobank/database/mitdb’
pb_dir=’mitdb’.

	channel_nameslist, optional

	List of channel names to return. If this parameter is specified,
it takes precedence over channels.

	warn_emptybool, optional

	Whether to display a warning if the specified channel indices
or names are not contained in the record, and no signal is
returned.

	signalsnumpy array

	A 2d numpy array storing the physical signals from the record.

	fieldsdict

	A dictionary containing several key attributes of the read
record:

	fs: The sampling frequency of the record

	units: The units for each channel

	sig_name: The signal name for each channel

	comments: Any comments written in the header

If a signal range or channel selection is specified when calling
this function, the resulting attributes of the returned object will
be set to reflect the section of the record that is actually read,
rather than necessarily the entire record. For example, if
channels=[0, 1, 2] is specified when reading a 12 channel record,
the ‘n_sig’ attribute will be 3, not 12.

The rdrecord function is the base function upon which this one is
built. It returns all attributes present, along with the signals, as
attributes in a Record object. The function, along with the
returned data type, has more options than rdsamp for users who
wish to more directly manipulate WFDB content.

>>> signals, fields = wfdb.rdsamp('sample-data/test01_00s',
 sampfrom=800,
 channel =[1,3])

	
wfdb.wrsamp(record_name, fs, units, sig_name, p_signal=None, d_signal=None, fmt=None, adc_gain=None, baseline=None, comments=None, base_time=None, base_date=None, write_dir='')

	Write a single segment WFDB record, creating a WFDB header file and any
associated dat files.

	record_namestr

	The string name of the WFDB record to be written (without any file
extensions).

	fsint, or float

	The sampling frequency of the record.

	unitslist

	A list of strings giving the units of each signal channel.

	sig_name :

	A list of strings giving the signal name of each signal channel.

	p_signalnumpy array, optional

	An (MxN) 2d numpy array, where M is the signal length. Gives the
physical signal values intended to be written. Either p_signal or
d_signal must be set, but not both. If p_signal is set, this method will
use it to perform analogue-digital conversion, writing the resultant
digital values to the dat file(s). If fmt is set, gain and baseline must
be set or unset together. If fmt is unset, gain and baseline must both
be unset.

	d_signalnumpy array, optional

	An (MxN) 2d numpy array, where M is the signal length. Gives the
digital signal values intended to be directly written to the dat
file(s). The dtype must be an integer type. Either p_signal or d_signal
must be set, but not both. In addition, if d_signal is set, fmt, gain
and baseline must also all be set.

	fmtlist, optional

	A list of strings giving the WFDB format of each file used to store each
channel. Accepted formats are: ‘80’,‘212”,‘16’,‘24’, and ‘32’. There are
other WFDB formats as specified by:
https://www.physionet.org/physiotools/wag/signal-5.htm
but this library will not write (though it will read) those file types.

	adc_gainlist, optional

	A list of numbers specifying the ADC gain.

	baselinelist, optional

	A list of integers specifying the digital baseline.

	commentslist, optional

	A list of string comments to be written to the header file.

	base_timestr, optional

	A string of the record’s start time in 24h ‘HH:MM:SS(.ms)’ format.

	base_datestr, optional

	A string of the record’s start date in ‘DD/MM/YYYY’ format.

	write_dirstr, optional

	The directory in which to write the files.

This is a gateway function, written as a simple method to write WFDB record
files using the most common parameters. Therefore not all WFDB fields can be
set via this function.

For more control over attributes, create a Record object, manually set its
attributes, and call its wrsamp instance method. If you choose this more
advanced method, see also the set_defaults, set_d_features, and
set_p_features instance methods to help populate attributes.

>>> # Read part of a record from Physiobank
>>> signals, fields = wfdb.rdsamp('a103l', sampfrom=50000, channels=[0,1],
 pb_dir='challenge/2015/training')
>>> # Write a local WFDB record (manually inserting fields)
>>> wfdb.wrsamp('ecgrecord', fs = 250, units=['mV', 'mV'],
 sig_name=['I', 'II'], p_signal=signals, fmt=['16', '16'])

	
class wfdb.Record(p_signal=None, d_signal=None, e_p_signal=None, e_d_signal=None, record_name=None, n_sig=None, fs=None, counter_freq=None, base_counter=None, sig_len=None, base_time=None, base_date=None, file_name=None, fmt=None, samps_per_frame=None, skew=None, byte_offset=None, adc_gain=None, baseline=None, units=None, adc_res=None, adc_zero=None, init_value=None, checksum=None, block_size=None, sig_name=None, comments=None)

	The class representing single segment WFDB records.

Record objects can be created using the initializer, by reading a WFDB
header with rdheader, or a WFDB record (header and associated dat files)
with rdrecord.

The attributes of the Record object give information about the record as
specified by: https://www.physionet.org/physiotools/wag/header-5.htm

In addition, the d_signal and p_signal attributes store the digital and
physical signals of WFDB records with at least one channel.

>>> record = wfdb.Record(record_name='r1', fs=250, n_sig=2, sig_len=1000,
 file_name=['r1.dat','r1.dat'])

	
adc(expanded=False, inplace=False)

	Performs analogue to digital conversion of the physical signal stored
in p_signal if expanded is False, or e_p_signal if expanded is True.

The p_signal/e_p_signal, fmt, gain, and baseline fields must all be
valid.

If inplace is True, the adc will be performed inplace on the variable,
the d_signal/e_d_signal attribute will be set, and the
p_signal/e_p_signal field will be set to None.

	expandedbool, optional

	Whether to transform the e_p_signal attribute (True) or
the p_signal attribute (False).

	inplacebool, optional

	Whether to automatically set the object’s corresponding
digital signal attribute and set the physical
signal attribute to None (True), or to return the converted
signal as a separate variable without changing the original
physical signal attribute (False).

	d_signalnumpy array, optional

	The digital conversion of the signal. Either a 2d numpy
array or a list of 1d numpy arrays.

>>> import wfdb
>>> record = wfdb.rdsamp('sample-data/100')
>>> d_signal = record.adc()
>>> record.adc(inplace=True)
>>> record.dac(inplace=True)

	
dac(expanded=False, return_res=64, inplace=False)

	Performs the digital to analogue conversion of the signal stored
in d_signal if expanded is False, or e_d_signal if expanded
is True.

The d_signal/e_d_signal, fmt, gain, and baseline fields must all be
valid.

If inplace is True, the dac will be performed inplace on the
variable, the p_signal/e_p_signal attribute will be set, and the
d_signal/e_d_signal field will be set to None.

	expandedbool, optional

	Whether to transform the e_d_signal attribute (True) or
the d_signal attribute (False).

	inplacebool, optional

	Whether to automatically set the object’s corresponding
physical signal attribute and set the digital signal
attribute to None (True), or to return the converted
signal as a separate variable without changing the original
digital signal attribute (False).

	p_signalnumpy array, optional

	The physical conversion of the signal. Either a 2d numpy
array or a list of 1d numpy arrays.

>>> import wfdb
>>> record = wfdb.rdsamp('sample-data/100', physical=False)
>>> p_signal = record.dac()
>>> record.dac(inplace=True)
>>> record.adc(inplace=True)

	
wrsamp(expanded=False, write_dir='')

	Write a wfdb header file and any associated dat files from this
object.

	expandedbool, optional

	Whether to write the expanded signal (e_d_signal) instead
of the uniform signal (d_signal).

	write_dirstr, optional

	The directory in which to write the files.

	
class wfdb.MultiRecord(segments=None, layout=None, record_name=None, n_sig=None, fs=None, counter_freq=None, base_counter=None, sig_len=None, base_time=None, base_date=None, seg_name=None, seg_len=None, comments=None, sig_name=None, sig_segments=None)

	The class representing multi-segment WFDB records.

MultiRecord objects can be created using the initializer, or by reading a
multi-segment WFDB record using ‘rdrecord’ with the m2s (multi to single)
input parameter set to False.

The attributes of the MultiRecord object give information about the entire
record as specified by: https://www.physionet.org/physiotools/wag/header-5.htm

In addition, the segments parameter is a list of Record objects
representing each individual segment, or None representing empty segments,
of the entire multi-segment record.

Notably, this class has no attribute representing the signals as a whole.
The ‘multi_to_single’ instance method can be called on MultiRecord objects
to return a single segment representation of the record as a Record object.
The resulting Record object will have its ‘p_signal’ field set.

>>> record_m = wfdb.MultiRecord(record_name='rm', fs=50, n_sig=8,
 sig_len=9999, seg_name=['rm_1', '~', rm_2'],
 seg_len=[800, 200, 900])
>>> # Get a MultiRecord object
>>> record_s = wfdb.rdsamp('s00001-2896-10-10-00-31', m2s=False)
>>> # Turn it into a
>>> record_s = record_s.multi_to_single()

record_s initially stores a MultiRecord object, and is then converted into
a Record object.

	
multi_to_single(physical, return_res=64)

	Create a Record object from the MultiRecord object. All signal
segments will be combined into the new object’s p_signal or
d_signal field. For digital format, the signals must have
the same storage format, baseline, and adc_gain in all segments.

	physicalbool

	Whether to convert the physical or digital signal.

	return_resint, optional

	The return resolution of the p_signal field. Options are:
64, 32, and 16.

	recordwfdb Record

	The single segment record created.

WFDB Anotations

	
wfdb.rdann(record_name, extension, sampfrom=0, sampto=None, shift_samps=False, pb_dir=None, return_label_elements=['symbol'], summarize_labels=False)

	Read a WFDB annotation file record_name.extension and return an
Annotation object.

	record_namestr

	The record name of the WFDB annotation file. ie. for file ‘100.atr’,
record_name=‘100’.

	extensionstr

	The annotatator extension of the annotation file. ie. for file
‘100.atr’, extension=’atr’.

	sampfromint, optional

	The minimum sample number for annotations to be returned.

	samptoint, optional

	The maximum sample number for annotations to be returned.

	shift_sampsbool, optional

	Specifies whether to return the sample indices relative to sampfrom
(True), or sample 0 (False).

	pb_dirstr, optional

	Option used to stream data from Physiobank. The Physiobank database
directory from which to find the required annotation file. eg. For
record ‘100’ in ‘http://physionet.org/physiobank/database/mitdb’:
pb_dir=’mitdb’.

	return_label_elementslist, optional

	The label elements that are to be returned from reading the annotation
file. A list with at least one of the following options: ‘symbol’,
‘label_store’, ‘description’.

	summarize_labelsbool, optional

	If True, assign a summary table of the set of annotation labels
contained in the file to the ‘contained_labels’ attribute of the
returned object. This table will contain the columns:
[‘label_store’, ‘symbol’, ‘description’, ‘n_occurences’]

	annotationAnnotation

	The Annotation object. Call help(wfdb.Annotation) for the attribute
descriptions.

For every annotation sample, the annotation file explictly stores the
‘sample’ and ‘symbol’ fields, but not necessarily the others. When reading
annotation files using this function, fields which are not stored in the
file will either take their default values of 0 or None, or will be carried
over from their previous values if any.

>>> ann = wfdb.rdann('sample-data/100', 'atr', sampto=300000)

	
wfdb.wrann(record_name, extension, sample, symbol=None, subtype=None, chan=None, num=None, aux_note=None, label_store=None, fs=None, custom_labels=None, write_dir='')

	Write a WFDB annotation file.

Specify at least the following:

	The record name of the WFDB record (record_name)

	The annotation file extension (extension)

	The annotation locations in samples relative to the beginning of
the record (sample)

	Either the numerical values used to store the labels
(label_store), or more commonly, the display symbols of each
label (symbol).

	record_namestr

	The string name of the WFDB record to be written (without any file
extensions).

	extensionstr

	The string annotation file extension.

	samplenumpy array

	A numpy array containing the annotation locations in samples relative to
the beginning of the record.

	symbollist, or numpy array, optional

	The symbols used to display the annotation labels. List or numpy array.
If this field is present, label_store must not be present.

	subtypenumpy array, optional

	A numpy array containing the marked class/category of each annotation.

	channumpy array, optional

	A numpy array containing the signal channel associated with each
annotation.

	numnumpy array, optional

	A numpy array containing the labelled annotation number for each
annotation.

	aux_notelist, optional

	A list containing the auxiliary information string (or None for
annotations without notes) for each annotation.

	label_storenumpy array, optional

	A numpy array containing the integer values used to store the
annotation labels. If this field is present, symbol must not be
present.

	fsint, or float, optional

	The numerical sampling frequency of the record to be written to the file.

	custom_labelspandas dataframe, optional

	The map of custom defined annotation labels used for this annotation, in
addition to the standard WFDB annotation labels. Custom labels are
defined by two or three fields:

	The integer values used to store custom annotation labels in the file
(optional)

	Their short display symbols

	Their long descriptions.

This input argument may come in four formats:

	A pandas.DataFrame object with columns:
[‘label_store’, ‘symbol’, ‘description’]

	A pandas.DataFrame object with columns: [‘symbol’, ‘description’]
If this option is chosen, label_store values are automatically chosen.

	A list or tuple of tuple triplets, with triplet elements
representing: (label_store, symbol, description).

	A list or tuple of tuple pairs, with pair elements representing:
(symbol, description). If this option is chosen, label_store values
are automatically chosen.

If the label_store field is given for this function, and
custom_labels is defined, custom_labels must contain label_store
in its mapping. ie. it must come in format 1 or 3 above.

	write_dirstr, optional

	The directory in which to write the annotation file

This is a gateway function, written as a simple way to write WFDB annotation
files without needing to explicity create an Annotation object. You may also
create an Annotation object, manually set its attributes, and call its
wrann instance method.

Each annotation stored in a WFDB annotation file contains a sample field and
a label field. All other fields may or may not be present.

>>> # Read an annotation as an Annotation object
>>> annotation = wfdb.rdann('b001', 'atr', pb_dir='cebsdb')
>>> # Write a copy of the annotation file
>>> wfdb.wrann('b001', 'cpy', annotation.sample, annotation.symbol)

	
wfdb.show_ann_labels()

	Display the standard wfdb annotation label mapping.

>>> show_ann_labels()

	
wfdb.show_ann_classes()

	Display the standard wfdb annotation classes

>>> show_ann_classes()

	
class wfdb.Annotation(record_name, extension, sample, symbol=None, subtype=None, chan=None, num=None, aux_note=None, fs=None, label_store=None, description=None, custom_labels=None, contained_labels=None)

	The class representing WFDB annotations.

Annotation objects can be created using the initializer, or by reading a
WFDB annotation file with rdann.

The attributes of the Annotation object give information about the
annotation as specified by:
https://www.physionet.org/physiotools/wag/annot-5.htm

Call show_ann_labels() to see the list of standard annotation codes. Any
text used to label annotations that are not one of these codes should go in
the ‘aux_note’ field rather than the ‘sym’ field.

>>> ann1 = wfdb.Annotation(record_name='rec1', extension='atr',
 sample=[10,20,400], symbol=['N','N','['],
 aux_note=[None, None, 'Serious Vfib'])

	
wrann(write_fs=False, write_dir='')

	Write a WFDB annotation file from this object.

	write_fsbool, optional

	Whether to write the fs attribute to the file.

Downloading

	
wfdb.get_dbs()

	Get a list of all the Physiobank databases available.

>>> dbs = get_dbs()

	
wfdb.get_record_list(db_dir, records='all')

	Get a list of records belonging to a database.

	db_dirstr

	The database directory, usually the same as the database slug.
The location to look for a RECORDS file.

	recordslist, optional

	A Option used when this function acts as a helper function.
Leave as default ‘all’ to get all records.

>>> wfdb.get_record_list('mitdb')

	
wfdb.dl_database(db_dir, dl_dir, records='all', annotators='all', keep_subdirs=True, overwrite=False)

	Download WFDB record (and optionally annotation) files from a
Physiobank database. The database must contain a ‘RECORDS’ file in
its base directory which lists its WFDB records.

	db_dirstr

	The Physiobank database directory to download. eg. For database:
‘http://physionet.org/physiobank/database/mitdb’, db_dir=’mitdb’.

	dl_dirstr

	The full local directory path in which to download the files.

	recordslist, or ‘all’, optional

	A list of strings specifying the WFDB records to download. Leave
as ‘all’ to download all records listed in the database’s
RECORDS file.
eg. records=[‘test01_00s’, test02_45s] for database:
https://physionet.org/physiobank/database/macecgdb/

	annotatorslist, ‘all’, or None, optional

	A list of strings specifying the WFDB annotation file types to
download along with the record files. Is either None to skip
downloading any annotations, ‘all’ to download all annotation
types as specified by the ANNOTATORS file, or a list of strings
which each specify an annotation extension.
eg. annotators = [‘anI’] for database:
https://physionet.org/physiobank/database/prcp/

	keep_subdirsbool, optional

	Whether to keep the relative subdirectories of downloaded files
as they are organized in Physiobank (True), or to download all
files into the same base directory (False).

	overwritebool, optional

	If True, all files will be redownloaded regardless. If False,
existing files with the same name and relative subdirectory will
be checked. If the local file is the same size as the online
file, the download is skipped. If the local file is larger, it
will be deleted and the file will be redownloaded. If the local
file is smaller, the file will be assumed to be partially
downloaded and the remaining bytes will be downloaded and
appended.

>>> wfdb.dl_database('ahadb', os.getcwd())

	
wfdb.dl_files(db, dl_dir, files, keep_subdirs=True, overwrite=False)

	Download specified files from a Physiobank database.

	dbstr

	The Physiobank database directory to download. eg. For database:
‘http://physionet.org/physiobank/database/mitdb’, db=’mitdb’.

	dl_dirstr

	The full local directory path in which to download the files.

	fileslist

	A list of strings specifying the file names to download relative to the
database base directory.

	keep_subdirsbool, optional

	Whether to keep the relative subdirectories of downloaded files as they
are organized in Physiobank (True), or to download all files into the
same base directory (False).

	overwritebool, optional

	If True, all files will be redownloaded regardless. If False, existing
files with the same name and relative subdirectory will be checked.
If the local file is the same size as the online file, the download is
skipped. If the local file is larger, it will be deleted and the file
will be redownloaded. If the local file is smaller, the file will be
assumed to be partially downloaded and the remaining bytes will be
downloaded and appended.

>>> wfdb.dl_files('ahadb', os.getcwd(),
 ['STAFF-Studies-bibliography-2016.pdf', 'data/001a.hea',
 'data/001a.dat'])

	
wfdb.set_db_index_url(db_index_url='http://physionet.org/physiobank/database/')

	Set the database index url to a custom value, to stream remote
files from another location.

	db_index_urlstr, optional

	The desired new database index url. Leave as default to reset
to the physiobank index url.

Plotting

	
wfdb.plot_items(signal=None, ann_samp=None, ann_sym=None, fs=None, time_units='samples', sig_name=None, sig_units=None, ylabel=None, title=None, sig_style=[''], ann_style=['r*'], ecg_grids=[], figsize=None, return_fig=False)

	Subplot individual channels of signals and/or annotations.

	signal1d or 2d numpy array, optional

	The uniformly sampled signal to be plotted. If signal.ndim is 1, it is
assumed to be a one channel signal. If it is 2, axes 0 and 1, must
represent time and channel number respectively.

	ann_samp: list, optional

	A list of annotation locations to plot, with each list item
corresponding to a different channel. List items may be:

	1d numpy array, with values representing sample indices. Empty
arrays are skipped.

	list, with values representing sample indices. Empty lists
are skipped.

	None. For channels in which nothing is to be plotted.

If signal is defined, the annotation locations will be overlaid on
the signals, with the list index corresponding to the signal channel.
The length of annotation does not have to match the number of
channels of signal.

	ann_sym: list, optional

	A list of annotation symbols to plot, with each list item
corresponding to a different channel. List items should be lists of
strings. The symbols are plotted over the corresponding ann_samp
index locations.

	fsint or float, optional

	The sampling frequency of the signals and/or annotations. Used to
calculate time intervals if time_units is not ‘samples’. Also
required for plotting ecg grids.

	time_unitsstr, optional

	The x axis unit. Allowed options are: ‘samples’, ‘seconds’, ‘minutes’,
and ‘hours’.

	sig_namelist, optional

	A list of strings specifying the signal names. Used with sig_units
to form y labels, if ylabel is not set.

	sig_unitslist, optional

	A list of strings specifying the units of each signal channel. Used
with sig_name to form y labels, if ylabel is not set. This
parameter is required for plotting ecg grids.

	ylabellist, optional

	A list of strings specifying the final y labels. If this option is
present, sig_name and sig_units will not be used for labels.

	titlestr, optional

	The title of the graph.

	sig_stylelist, optional

	A list of strings, specifying the style of the matplotlib plot
for each signal channel. The list length should match the number
of signal channels. If the list has a length of 1, the style
will be used for all channels.

	ann_stylelist, optional

	A list of strings, specifying the style of the matplotlib plot for each
annotation channel. If the list has a length of 1, the style will be
used for all channels.

	ecg_gridslist, optional

	A list of integers specifying channels in which to plot ecg grids. May
also be set to ‘all’ for all channels. Major grids at 0.5mV, and minor
grids at 0.125mV. All channels to be plotted with grids must have
sig_units equal to ‘uV’, ‘mV’, or ‘V’.

	figsizetuple, optional

	Tuple pair specifying the width, and height of the figure. It is the
‘figsize’ argument passed into matplotlib.pyplot’s figure function.

	return_figbool, optional

	Whether the figure is to be returned as an output argument.

	figurematplotlib figure, optional

	The matplotlib figure generated. Only returned if the ‘return_fig’
parameter is set to True.

>>> record = wfdb.rdrecord('sample-data/100', sampto=3000)
>>> ann = wfdb.rdann('sample-data/100', 'atr', sampto=3000)

>>> wfdb.plot_items(signal=record.p_signal,
 annotation=[ann.sample, ann.sample],
 title='MIT-BIH Record 100', time_units='seconds',
 figsize=(10,4), ecg_grids='all')

	
wfdb.plot_wfdb(record=None, annotation=None, plot_sym=False, time_units='samples', title=None, sig_style=[''], ann_style=['r*'], ecg_grids=[], figsize=None, return_fig=False)

	Subplot individual channels of a wfdb record and/or annotation.

This function implements the base functionality of the plot_items
function, while allowing direct input of wfdb objects.

	If the record object is input, the function will extract from it:

	
	signal values, from the p_signal (priority) or d_signal attribute

	sampling frequency, from the fs attribute

	signal names, from the sig_name attribute

	signal units, from the units attribute

	If the annotation object is input, the function will extract from it:

	
	sample locations, from the sample attribute

	symbols, from the symbol attribute

	the annotation channels, from the chan attribute

	the sampling frequency, from the fs attribute if present, and if fs
was not already extracted from the record argument.

	recordwfdb Record, optional

	The Record object to be plotted

	annotationwfdb Annotation, optional

	The Annotation object to be plotted

	plot_symbool, optional

	Whether to plot the annotation symbols on the graph.

	time_unitsstr, optional

	The x axis unit. Allowed options are: ‘samples’, ‘seconds’,
‘minutes’, and ‘hours’.

	titlestr, optional

	The title of the graph.

	sig_stylelist, optional

	A list of strings, specifying the style of the matplotlib plot
for each signal channel. The list length should match the number
of signal channels. If the list has a length of 1, the style
will be used for all channels.

	ann_stylelist, optional

	A list of strings, specifying the style of the matplotlib plot
for each annotation channel. The list length should match the
number of annotation channels. If the list has a length of 1,
the style will be used for all channels.

	ecg_gridslist, optional

	A list of integers specifying channels in which to plot ecg grids. May
also be set to ‘all’ for all channels. Major grids at 0.5mV, and minor
grids at 0.125mV. All channels to be plotted with grids must have
sig_units equal to ‘uV’, ‘mV’, or ‘V’.

	figsizetuple, optional

	Tuple pair specifying the width, and height of the figure. It is the
‘figsize’ argument passed into matplotlib.pyplot’s figure function.

	return_figbool, optional

	Whether the figure is to be returned as an output argument.

	figurematplotlib figure, optional

	The matplotlib figure generated. Only returned if the ‘return_fig’
option is set to True.

>>> record = wfdb.rdrecord('sample-data/100', sampto=3000)
>>> annotation = wfdb.rdann('sample-data/100', 'atr', sampto=3000)

>>> wfdb.plot_wfdb(record=record, annotation=annotation, plot_sym=True
 time_units='seconds', title='MIT-BIH Record 100',
 figsize=(10,4), ecg_grids='all')

	
wfdb.plot_all_records(directory='')

	Plot all wfdb records in a directory (by finding header files), one at
a time, until the ‘enter’ key is pressed.

	directorystr, optional

	The directory in which to search for WFDB records. Defaults to
current working directory.

Installation

The distribution is hosted on pypi at: https://pypi.python.org/pypi/wfdb/. To directly install the package from pypi without needing to explicitly download content, run from your terminal:

$ pip install wfdb

The development version is hosted at: https://github.com/MIT-LCP/wfdb-python. This repository also contains demo scripts and example data. To install the development version, clone or download the repository, navigate to the base directory, and run:

$ pip install .

WFDB Specifications

The wfdb-python package is built according to the specifications of the original WFDB package.

	WFDB Software Package [http://physionet.org/physiotools/wfdb.shtml]

	WFDB Applications Guide [http://physionet.org/physiotools/wag/]

	WFDB Header Specifications [https://physionet.org/physiotools/wag/header-5.htm]

	WFDB Signal Specifications [https://physionet.org/physiotools/wag/signal-5.htm]

	WFDB Annotation Specifications [https://physionet.org/physiotools/wag/annot-5.htm]

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wfdb	

 	
 	
 wfdb.io	

 	
 	
 wfdb.plot	

 	
 	
 wfdb.processing	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | M
 | N
 | P
 | R
 | S
 | W
 | X

A

 	
 	adc() (wfdb.io.Record method)

 	(wfdb.Record method)

 	
 	Annotation (class in wfdb)

 	(class in wfdb.io)

B

 	
 	benchmark_mitdb() (in module wfdb.processing)

C

 	
 	compare() (wfdb.processing.Comparitor method)

 	compare_annotations() (in module wfdb.processing)

 	
 	Comparitor (class in wfdb.processing)

 	compute_hr() (in module wfdb.processing)

 	correct_peaks() (in module wfdb.processing)

D

 	
 	dac() (wfdb.io.Record method)

 	(wfdb.Record method)

 	detect() (wfdb.processing.XQRS method)

 	
 	dl_database() (in module wfdb)

 	(in module wfdb.io)

 	dl_files() (in module wfdb)

 	(in module wfdb.io)

F

 	
 	find_local_peaks() (in module wfdb.processing)

 	
 	find_peaks() (in module wfdb.processing)

G

 	
 	get_dbs() (in module wfdb)

 	(in module wfdb.io)

 	get_filter_gain() (in module wfdb.processing)

 	
 	get_record_list() (in module wfdb)

 	(in module wfdb.io)

 	gqrs_detect() (in module wfdb.processing)

M

 	
 	multi_to_single() (wfdb.io.MultiRecord method)

 	(wfdb.MultiRecord method)

 	
 	MultiRecord (class in wfdb)

 	(class in wfdb.io)

N

 	
 	normalize_bound() (in module wfdb.processing)

P

 	
 	plot() (wfdb.processing.Comparitor method)

 	plot_all_records() (in module wfdb)

 	(in module wfdb.plot)

 	plot_items() (in module wfdb)

 	(in module wfdb.plot)

 	
 	plot_wfdb() (in module wfdb)

 	(in module wfdb.plot)

 	print_summary() (wfdb.processing.Comparitor method)

R

 	
 	rdann() (in module wfdb)

 	(in module wfdb.io)

 	rdrecord() (in module wfdb)

 	(in module wfdb.io)

 	rdsamp() (in module wfdb)

 	(in module wfdb.io)

 	
 	Record (class in wfdb)

 	(class in wfdb.io)

 	resample_ann() (in module wfdb.processing)

 	resample_multichan() (in module wfdb.processing)

 	resample_sig() (in module wfdb.processing)

 	resample_singlechan() (in module wfdb.processing)

S

 	
 	set_db_index_url() (in module wfdb)

 	(in module wfdb.io)

 	show_ann_classes() (in module wfdb)

 	(in module wfdb.io)

 	
 	show_ann_labels() (in module wfdb)

 	(in module wfdb.io)

W

 	
 	wfdb (module), [1], [2], [3]

 	wfdb.io (module), [1], [2]

 	wfdb.plot (module)

 	wfdb.processing (module), [1], [2], [3], [4]

 	wrann() (in module wfdb)

 	(in module wfdb.io)

 	(wfdb.Annotation method)

 	(wfdb.io.Annotation method)

 	
 	wrsamp() (in module wfdb)

 	(in module wfdb.io)

 	(wfdb.Record method)

 	(wfdb.io.Record method)

X

 	
 	XQRS (class in wfdb.processing)

 	
 	XQRS.Conf (class in wfdb.processing)

 	xqrs_detect() (in module wfdb.processing)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 wfdb

 		
 io

 		
 WFDB Records

 		
 WFDB Anotations

 		
 Downloading

 		
 plot

 		
 processing

 		
 Basic Utility

 		
 Heart Rate

 		
 Peaks

 		
 QRS Detectors

 		
 Annotation Evaluators

 		
 wfdb

 		
 WFDB Records

 		
 WFDB Anotations

 		
 Downloading

 		
 Plotting

 		
 Installation

 		
 WFDB Specifications

_static/up-pressed.png

_static/up.png

